Autour de la trace

Patrice Lassère¹

¹, Université Paul Sabatier, Toulouse

11 août 2023

Exercice $0.1 \longrightarrow \bigstar$ Autour de la trace

[?]

Soit $A \in M_n(\mathbb{R})$ telle que

$$\forall X \in M_n(\mathbb{R}), \ tr(X) = 0 \Longrightarrow tr(AX) = 0.$$

Montrer qu'il existe $\lambda \in \mathbb{R}$ tel que $A = \lambda I_n$.

Solution : Muni du produit scalaire $\langle A, B \rangle = tr(A^tB)$, $M_n(\mathbb{R})$ est un espace euclidien et

$$E := \{ A \in M_n(\mathbb{R}) : tr(A) = 0 \}$$

est un sous-espace vectoriel de $M_n(\mathbb{R})$ de dimension n^2-1 : c'est en effet le noyau de la forme linéaire

$$\varphi: A \in M_n(\mathbb{R}) \mapsto \varphi(A) = tr(A)$$

 $donc\ \dim E + \dim\left(\mathrm{im}(\varphi)\right) = n^2 \Longrightarrow \dim E = n^2 - \dim\left(\mathrm{im}(\varphi)\right) = n^2 - 1\ car\ \mathrm{im}(\varphi)\ \mathrm{est}\ \mathrm{un}$ sous-espace non réduit à l'origine de $\mathbb R$ donc égal à $\mathbb R$.

Par suite dim $E^{\perp}=1$ et $E^{\perp}=\mathbb{R}I_n$ car bien sûr $I_n\in E^{\perp}$, mais

$$\left(\forall X \in M_n(\mathbb{R}), \ tr(X) = 0 \Longrightarrow tr(AX) = 0 = \langle A, {}^tX \rangle\right) \iff \left(A \in E^{\perp} = \mathbb{R}I_n\right)$$

Références