Une matrice symétrique non diagonalisable

Patrice Lassère¹

¹, Université Paul Sabatier, Toulouse

11 août 2023

Exercice 0.1 \bigstar Une matrice symétrique non diagonalisable

La matrice symétrique $\begin{pmatrix} 2 & i \\ i & 0 \end{pmatrix}$ est-elle diagonalisable?

Solution : Non bien sûr! $\lambda=1$ est son unique valeur propre : si elle était diagonalisable elle serait semblable et donc égale à I_2 .

Remarques : - un contre-exemple à toujours avoir sous la main : ce sont les matrices symétriques **réelles** qui sont toujours diagonalisables et dans une base orthonormée s'il vous plaît.

- Profitons en pour donner l'exemple d'une matrice non triangularisable (sur $\mathbb R$ bien entendu...) : $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ et d'une matrice non diagonalisable (sur $\mathbb C$ bien entendu...), à savoir $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
 - Dans la même veine, pour terminer voici deux matrices

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

qui ne sont pas semblables mais qui ont même polynômes minimal et caractéristiques. Vous pouvez remarquer que ce sont des matrices 4×4 , ce qui est normal car pour $n \leq 3$, deux matrices (ou endomorphismes) sont semblables si, et seulement si, ils ont mêmes polynômes minimal et caractéristiques. Mais pour $n \geq 4$ l'implication non triviale est fausse.

Références