Étude $A \mapsto A^3$ dans $M_3(\mathbb{R})$

Patrice Lassère¹

¹, Université Paul Sabatier, Toulouse

11 août 2023

Exercice 0.1 \bigstar Étude $A\mapsto A^3$ dans $M_3(\mathbb{R})$

[?]

Déterminer l'image de l'application φ de $M_3(\mathbb{R})$ dans $M_3(\mathbb{R})$ définie par $\varphi(A) = A^3$.

Solution : Nous allons vérifier que cette image est constituée de toutes les matrices $A \in M_3(\mathbb{R})$ sauf celles admettant 0 comme valeur propre multiple et qui ne sont pas diagonalisables.

Soit $B \in M_3(\mathbb{R})$ et cherchons $A \in M_3(\mathbb{R})$ vérifiant $\varphi(A) = A^3$. On distingue plusieurs cas pour B

- B est diagonalisable sur \mathbb{R} .

Il existe alors une base $\{u, v, w\}$ de \mathbb{R}^3 , des réels α, β, γ tels que

$$Bu = \alpha u$$
, $Bv = \beta v$, $Bw = \gamma w$.

 $\lambda, \mu, \nu \in \mathbb{R}$ désignant les racines cubiques des valeurs propres α, β, γ , définissons la matrice $A \in M_3(\mathbb{R})$ par

$$Au = \lambda u, \quad Av = \mu v, \quad Aw = \nu w.$$

A est bien réelle et vérifie $A^3 = B$ et B admet bien un antécédent par φ .

- B possède une valeur propre non réelle.

Les valeurs propres de B sont donc un réel α et deux complexes non réels conjugués ω et $\overline{\omega}$. Il existe un vecteur réel non nul u et un vecteur complexe z non nul tels que

$$Bu = \alpha u$$
, $Bz = \omega z$, et par suite, $B\overline{z} = \overline{\omega z}$.

Notons λ le réel racine cubique de α et soit θ une racine cubique de ω . La matrice A définie dans la base (u, z, \overline{z}) de \mathbb{C}^3 par

$$Au = \lambda u, \quad Az = \theta z, \quad A\overline{z} = \overline{\theta}\overline{z}$$

vérifie $A^3 = B$. En outre \overline{A} envoie u sur λu , z sur $\overline{\theta}z$ et \overline{z} sur $\theta \overline{z}$. A est donc réelle et et B admet bien un antécédent par φ .

- B possède une valeur propre réelle non nulle λ d'ordre 2 et n'est pas diagonalisable. Les valeurs propres de B sont λ, λ, μ où μ est un autre réel. Posons $\alpha = \lambda^{1/3}, \ \beta = \mu^{1/3}$, on a donc

$$\mathbb{R}^3 = \ker(B - \lambda I_3)^2 \oplus \ker(B - \mu I_3)$$

La dimension de $\ker(B-\lambda I_3)$ n'est pas deux sinon B serait diagonalisable, elle vaut donc 1. Puisque $\dim \ker(B-\lambda I_3)^2=2$, $\dim \ker(B-\lambda I_3)=1$, considérons $u\in \ker(B-\lambda I_3)^2\setminus \ker(B-\lambda I_3)$, $v=(B-\lambda I_3)u$ et w un vecteur non nul de $\ker(B-\mu I_3)$. on a ainsi construit une base (u,v,w) de \mathbb{R}^3 qui vérifie

$$Bu = \lambda u + v$$
, $Bv = \lambda v$, $Bw = \mu w$.

Une matrice $A \in M_3(\mathbb{R}^3)$ vérifiant pour un certain réel c

$$Au = \alpha u + cv$$
, $Av = \alpha v$, $Aw = \beta w$

vérifiera

$$A^3u = \lambda u + 3\alpha^2 cv$$
, $A^3v = \lambda v$, $A^3w = \mu w$

de sorte que si $c = \frac{1}{3\alpha^2} : A^3 = B$.

- B possède une valeur propre non nulle λ d'ordre 3 et n'est pas diagonalisable

Dans ce cas $B = \lambda(I_3 + N)$ où N est une matrice nilpotente non nulle. Posons $\alpha = \lambda^{1/3}$ et cherchons A sous la forme $A = \alpha(I_3 + M)$ avec M nilpotente. On a $M^3 = 0$ donc $A^3 = \lambda(I_3 + 3M + 3M^2)$ et tout se ramène à l'équation $3M + 3M^2 = N$ qui est vérifiée par $M = \frac{1}{9}(3N - N^2)$. Une fois de plus B admet un antécédent.

- B admet 0 comme valeur propre d'ordre 2 ou 3 et n'est pas diagonalisable.

Si l'équation $A^3 = B$ admet une solution, A admet aussi comme vaelur propre d'ordre 2 ou 3. Si 0 est valeur propre d'ordre 3 alors A est nilpotente, $A^3 = 0$, ce qui est absurde puisque B n'est pas diagonalisable. Supposons donc que O soit valeur propre d'ordre 2 de A et notons α l'autre valeur propre (réelle). $\mathbb{R}^3 = \ker(A^2) \oplus \ker(A - \alpha I_3)$ mais $A^3 = B$ implique Bx = 0, $\forall x \in \ker(A^2)$ soit $\mathbb{R}^3 = \ker(B) \oplus \ker(B - \alpha^3 I_3)$: B est alors diagonalisable ce qui est exclut : tous les cas sont épuisés et la conclusion annoncée s'impose.

Références