Une équation matricielle dans $M_2(\mathbb{C})$

Patrice Lassère¹

¹, Université Paul Sabatier, Toulouse

24 juin 2023

Exercice 0.1 \bigstar Une équation matricielle dans $M_2(\mathbb{C})$

Montrer que l'équation

 $X^r = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

n'a pas de solutions dans $M_2(\mathbb{C})$ pour tout entier $r \geq 2$.

Supposons qu'il existe $r \geq 2$ et $A \in M_2(\mathbb{C})$ tels que $A^r = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Alors $A^{2r} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

 $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, et le polynôme caractéristique $\chi_A(x) = ax^2 + bx + c$ de A divise donc x^{2r} ; ceci implique c = b = 0, soit $\chi_A(x) = x^2$ et (Cayley-Hamilton) $A^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Ainsi (comme $r \ge 2$)

$$c=b=0$$
, soit $\chi_A(x)=x^2$ et (Cayley-Hamilton) $A^2=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Ainsi (comme $r\geq 2$)

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = A^r = A^2 A^{r-2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

ce qui est absurde : cette équation est bien sans solutions.

Références