Pas de titre

Alain Soyeur¹, Emmanuel Vieillard-Baron², and François Capaces³

¹Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse ²Enseignant en CPGE, Lycée Kléber, Strasbourg ³, ,

22 septembre 2021

Exercice 0.1 \bigstar Pas de titre

Soit une fonction f continue et positive sur le segment [a,b]. En utilisant la fonction $F(x) = \int_a^x f(t) dt$, montrer que si $\int_a^b f(t) dt = 0$, alors $\forall x \in [a,b]$, f(x) = 0.

Solution : Comme f est continue sur le segment [a,b], d'après le théorème fondamental, f admet une primitive F sur [a,b] s'annulant en a et donnée par : $F(x) = \int_a^x f(t) \, \mathrm{d}t$. Comme f est positive, la fonction F est croissante. Mais d'après l'hypothèse $F(b) = \int_a^b f(t) \, \mathrm{d}t = 0 = F(a)$, donc F est nécessairement constante. On en déduit que f est identiquement nulle sur [a,b].

Références