Pas de titre

Alain Soyeur¹, Emmanuel Vieillard-Baron², and François Capaces³

¹Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse ²Enseignant en CPGE, Lycée Kléber, Strasbourg

22 septembre 2021

Exercice 0.1 $\bigstar \star$ Pas de titre

Soient $f, g: [a, b] \to \mathbb{R}$ deux fonctions continues. On suppose que $g \geqslant 0$. Montrer qu'il existe $c \in [a, b]$ tel que

$$\int_{a}^{b} f(t)g(t) dt = f(c) \int_{a}^{b} g(t) dt$$

Solution : Si g est identiquement nulle sur [a,b], la propriété est trivialement vérifiée. Supposons que ce ne soit pas le cas. Comme $g \ge 0$, on peut affirmer que $\int_a^b g(t) dt \ne 0$. De plus :

$$\inf_{[a,b]} f = \frac{\inf_{[a,b]} f \int_a^b g(t) \, dt}{\int_a^b g(t) \, dt} \leqslant \frac{\int_a^b f(t)g(t) \, dt}{\int_a^b g(t) \, dt} \leqslant \frac{\sup_{[a,b]} f \int_a^b g(t) \, dt}{\int_a^b g(t) \, dt} = \sup_{[a,b]} f.$$

On en déduit que $\frac{\int_a^b f(t)g(t)\,\mathrm{d}t}{\int_a^b g(t)\,\mathrm{d}t}\in \left[\inf_{[a,b]}f,\sup_{[a,b]}f\right]$. Comme f est continue, d'après le théorème des valeurs intermédiaires appliqué sur le segment [a,b], il existe $c\in[a,b]$ tel que $f(c)=\frac{\int_a^b f(t)g(t)\,\mathrm{d}t}{\int_a^b g(t)\,\mathrm{d}t}$ et l'égalité est prouvée.

Références