Pas de titre

Alain Soyeur¹, Emmanuel Vieillard-Baron², and François Capaces³

¹Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse ²Enseignant en CPGE, Lycée Kléber, Strasbourg ³, ,

22 septembre 2021

Exercice 0.1 $\bigstar \star$ Pas de titre

Calculer l'intégrale

$$I = \int_0^1 \sqrt{x(1-x)} dx$$

Solution: On peut écrire $x(1-x) = -(x^2 - x) = -((x - \frac{1}{2})^2 - \frac{1}{4})$ Donc

$$I = \int_0^1 \sqrt{\frac{1}{4} - (x - \frac{1}{2})^2} dx$$

et en posant $y = x - \frac{1}{2}$, dy = dx,

$$I = \frac{1}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \sqrt{\frac{1}{4} - (2y)^2} dy$$

Par le changement de variables z = 2y, $dy = \frac{dz}{2}$,

$$I = \frac{1}{4} \int_{-1}^{1} \sqrt{1 - z^2} dz = \frac{1}{4} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 t dt = \boxed{\frac{\pi}{8}}$$

On peut retrouver ce résultat en étudiant la courbe $y=\sqrt{x(1-x)}:y^2=x(1-x)$ donc $x^2+y^2-x=0, (x-\frac{1}{2})^2+y^2=\frac{1}{4}$. C'est le demi-cercle centré en $(\frac{1}{2},0)$ de rayon $\frac{1}{2}$. L'intégrale cherchée est donc la demi-aire d'un disque de rayon $\frac{1}{2}$ qui vaut $\frac{\pi}{8}$.

Références