Pas de titre

Alain Soyeur¹, Emmanuel Vieillard-Baron², and François Capaces³

¹Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse ²Enseignant en CPGE, Lycée Kléber, Strasbourg

22 septembre 2021

Exercice $0.1 \longrightarrow \bigstar$ Pas de titre

Déterminer les primitives suivantes :

1.
$$\int \frac{x^2}{1+x^3} dx$$

2.
$$\int \frac{1}{(2x+1)^3} dx$$

3.
$$\int \sqrt{1-x} \, dx$$

4. $\int \cos x \sin x \, dx$

$$5. \int \frac{1}{x \ln x} \, dx$$

6.
$$\int x\sqrt{1+x^2}\,dx$$

Solution : On utilise à chaque fois, là où elle est valide, la formule : $\int u'u^a =$ Solution: On utilise a chaque fols, ha on one case value, ha formula: $\int \frac{1}{a+1} u^{a+1} + C$ si $a \in \mathbb{R} \setminus \{-1\} \ln |u| + C$.

1. $\int \frac{x^2}{1+x^3} dx = \frac{1}{3} \ln |1+x^3| + C^{te}$ sur \mathbb{R} 2. $\int \frac{1}{(2x+1)^3} dx = -\frac{1}{4(2x+1)^2} + C^{te}$ sur $\frac{1}{2x+1} + C^{te}$ sur

1.
$$\int \frac{x^2}{1+x^3} dx = \frac{1}{3} \ln |1+x^3| + C^{te} \operatorname{sur} \mathbb{R}$$

$$]-\infty,1].$$

2.
$$\int \frac{1}{(2x+1)^3} dx = -\frac{1}{4(2x+1)^2} + C^{te} \sin \mathbb{R} \setminus \{-1/2\}$$

4.
$$\int \cos x \sin x \, dx = \frac{1}{2} \sin^2 x + C^{te} \, \sin \mathbb{R}.$$

3.
$$\int \sqrt{1-x} \, dx = -\frac{2}{2} (1-x)^{\frac{3}{2}} + C^{te} \, su$$

6.
$$\int x\sqrt{1+x^2} dx = \frac{1}{3} (1+x^2)^{\frac{3}{2}} + C^{te} \operatorname{sur} \mathbb{R}.$$

Références