Pas de titre

Alain Soyeur¹, Emmanuel Vieillard-Baron², and François Capaces³

 $^1{\rm Enseignant}$ en CPGE, Lycée Pierre de Fermat, Toulouse $^2{\rm Enseignant}$ en CPGE, Lycée Kléber, Strasbourg 3

22 septembre 2021

Exercice 0.1 \bigstar Pas de titre

Résoudre dans \mathbb{R}^3 les systèmes :

1.
$$\begin{cases} x-y + z = 1 \\ 3y - z = 2 \\ 2z = 8 \end{cases}$$
2.
$$\begin{cases} x-y + 2z = 1 \\ 2x - 3y + z = 4 \\ x - 3y - 4z = 5 \end{cases}$$
3.
$$\begin{cases} x+2y + z = 2 \\ 2x + y + z = -1 \\ x - 3y + 2z = -1 \end{cases}$$
4.
$$\begin{cases} x-y + 2z = 1 \\ 2x - 3y + z = 4 \\ x - 3y + 3z = 1 \end{cases}$$
5.
$$\begin{cases} 2x - y + 3z = 1 \\ x + y - z = 2 \\ x - 2y + 4z = 1 \end{cases}$$
7.
$$\begin{cases} 2x - y + 3z = 0 \\ x - 2y + 4z = 1 \end{cases}$$
7.
$$\begin{cases} 2x - y + 3z = 0 \\ x + y + 2z = 0 \end{cases}$$
8.
$$\begin{cases} x + 2y - z = 1 \\ 2x + y - z = 1 \end{cases}$$
8.
$$\begin{cases} x + 2y - z = 1 \\ 2x + y - z = 1 \end{cases}$$
9.
$$\begin{cases} x + y - z = 1 \\ 2x + 2y - 2z = 2 \\ -x - y + z = -1 \end{cases}$$

Solution:

- 1. En remontant, on trouve successivement : z = 4; y = 2; x = -1.
- $2. \begin{cases} x y + 2z = 1 \\ 2x 3y + z = 4 & L_2 \leftarrow L_2 2L_1 \\ x 3y 4z = 5 & L_3 \leftarrow L_3 L_1 \end{cases} \begin{cases} x y + 2z = 1 \\ y 3z = 2 \\ 2y 6z = 4 \end{cases}$

Les deux dernières équations sont équivalentes. Le système est de rang 2 et compatible. En prenant z comme paramètre, l'ensemble des solutions est $\{(-5z-1, -3z-2, z) \mid z \in \mathbb{K}\}$.

- 3. Système de Cramer : $\left\{\left(-\frac{5}{2},1,\frac{1}{2}\right)\right\}$.
- 4. Système de rang 2 et compatible. $\{(2, -3z, z) \mid z \in \mathbb{K}\}.$
- 5. Système de Cramer : $\{(-2,1,2)\}$.

- 6. Système de rang 2 mais pas compatible. Pas de solution.
- 7. $\begin{cases} 2x y + 3z = 0 \\ x + y + 2z = 0 \end{cases} \text{ soit } \begin{cases} 2x y + 3z = 0 \\ 3x + 5z = 0 \end{cases}$ Le système est de rang 2, donc compatible. En prenant z comme paramètre, l'ensemble des solutions est $\left\{ \left(-\frac{5}{3}z, -\frac{1}{3}z, z \right) \mid z \in \mathbb{K} \right\}$.

8. Le système est clairement de rang 1 et compatible (on a trois fois la même équation). L'ensemble des solutions est le plan d'équation x + y - z = 1.

Références