Pas de titre

Alain Soyeur¹, Emmanuel Vieillard-Baron², and François Capaces³

¹Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse ²Enseignant en CPGE, Lycée Kléber, Strasbourg

22 septembre 2021

Exercice 0.1 \bigstar Pas de titre $\begin{pmatrix} 1 & 2 & -1 \end{pmatrix}$

 $Soit A = \left(\begin{array}{ccc} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right)$

- 1. Montrer que $A-I_3$ est nilpotente d'ordre 3 (c'est-à-dire que $(A-I_3)^2\neq 0$ et que $(A-I_3)^3=0$
- 2. En déduire, en utilisant la formule du binôme de Newton A^n pour tout $n \in \mathbb{N}$.

Solution:

- 1. Par un calcul direct, on montre que $B = A I_3$ vérifie $B^3 = 0$ et $B^2 \neq 0$.
- 2. Utilisant la formule du binôme, ce qui est valide car $I_3 \times B = B \times I_3$, on obtient, pour $n \geqslant 3$:

$$A^{n} = (B + I_{3})^{n}$$

$$= \sum_{k=0}^{n} {n \choose k} B^{k}$$

$$= {n \choose 0} B^{0} + {n \choose 1} B^{1} + {n \choose 2} B^{2}$$

$$= {1 \choose 0} a n (n-2) \choose 0 \ 0 \ 1}$$

Cette formule reste valable si n = 0, 1, 2.

Références