Pas de titre

Emmanuel Vieillard-Baron¹, Alain Soyeur², and François Capaces³

¹Enseignant en CPGE, Lycée Kléber, Paris ²Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse

29 mars 2023

Exercice 0.1 $\bigstar \star$ Pas de titre

Soit une matrice $A = ((a_{i,j})) \in \mathfrak{M}_n(\mathbb{K})$ et deux indices $(k,l) \in [1,n]^2$.

- 1. Déterminer les matrices $AE_{k,l}$ et $E_{k,l}A$.
- 2. Trouver toutes les matrices $A \in \mathfrak{M}_n(\mathbb{K})$ vérifiant : $\forall B \in \mathfrak{M}_n(\mathbb{K})$, AB = BA.

Solution:

1. On sait que $A = \sum_{i,j=1...n} a_{i,j} E_{ij}$ donc

$$AE_{k,l} = \sum_{i,j=1...n} a_{i,j} E_{i,j} E_{k,l} = \sum_{i,j=1...n} a_{i,j} \delta_{j,k} E_{i,l} = \sum_{i=1...n} a_{i,k} E_{i,l}$$

$$E_{k,l}A = \sum_{i,j=1...n} a_{i,j} E_{k,l} E_{i,j} = \sum_{i,j=1...n} a_{i,j} \delta_{l,i} E_{k,j} = \sum_{j=1...n} a_{l,j} E_{k,j}$$

2. Si pour tout $B \in \mathfrak{M}_n(\mathbb{K})$, AB = BA, alors en particulier, pour tout $k, l \in [\![1,n]\!]$, $E_{k,l}A = AE_{l,k}$ et donc $\sum_{i=1...n} a_{i,k}E_{i,l} = \sum_{j=1...n} a_{l,j}E_{k,j}$. Mais la famille $(E_{i,j})$ est libre donc cette égalité n'a lieu que si $a_{i,k} = 0$ pour $i \neq k$ et si $a_{i,i} = a_{j,j}$ pour tout $i, j \in [\![1,n]\!]$, autrement dit que si A est scalaire. Réciproquement, si A est scalaire alors elle commute avec toutes les matrices de $\mathfrak{M}_n(\mathbb{K})$.

Références