Pas de titre

Emmanuel Vieillard-Baron¹, Alain Soyeur², and François Capaces³

¹Enseignant en CPGE, Lycée Kléber, Strasbourg ²Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse

20 avril 2024

Exercice 0.1 $\bigstar \star$ Pas de titre

Soit $A = X^3 + X^2 + X + 1$ et $E = \mathbb{R}_n[X]$. Considérons l'application

$$r: \left\{ \begin{array}{ccc} E & \longrightarrow & E \\ P & \longmapsto & r(P) \end{array} \right.$$

où r(P) désigne le reste de la division euclidienne de P par A.

- 1. Montrer que r est bien définie et que $r \in \mathfrak{L}(E)$..
- 2. Prouver que $r^2 = r$. Qu'en déduisez vous?
- 3. Déterminer l'image et le noyau de r.

Solution:

1. Soit $P \in E$. Par application du théorème de la division euclidienne, il existe un unique couple $(Q,R) \in (\mathbb{R}[X])^2$ tel que P = AQ + R et $\deg R < 3$. On a donc r(P) = R et r est bien définie. Si on considère un autre polynôme $\widetilde{P} \in E$, il existe un couple $(\widetilde{Q},\widetilde{R}) \in (\mathbb{R}[X])^2$ tel que $\widetilde{P} = A\widetilde{Q} + \widetilde{R}$ et $\deg \widetilde{R} < 3$. De plus, pour tout $\alpha, \widetilde{\alpha} \in \mathbb{R}$:

$$\alpha P + \widetilde{\alpha} \widetilde{P} = A \left(\alpha Q + \widetilde{\alpha} \widetilde{Q} \right) + \left(\alpha R + \widetilde{\alpha} \widetilde{R} \right)$$

et deg $\left(\alpha R + \widetilde{\alpha}\widetilde{R}\right) < 3$. Par unicité du couple quotient-reste dans la division euclidienne de deux polynômes, on peut affirmer que le reste de la division euclidienne de $\alpha P + \widetilde{\alpha}\widetilde{P}$ par A est $\alpha R + \widetilde{\alpha}\widetilde{R}$. On prouve ainsi que $r\left(\alpha P + \widetilde{\alpha}\widetilde{P}\right) = \alpha r\left(P\right) + \widetilde{\alpha}r\left(\widetilde{P}\right)$ et donc $r \in \mathfrak{L}(E)$.

- 2. Avec les notations de la question précédente, r(P) = R avec deg R < 3. Donc R = 0A + R et par unicité du couple quotient-reste dans la division euclidienne, r(R) = R. On prouve ainsi que $r^2 = r$. r est donc un projecteur.
- 3. Il est clair que le noyau de r est l'ensemble des polynômes de $\mathbb{R}_n[X]$ qui sont divisibles par A. Il est aussi clair que $\operatorname{Im} r \subset \mathbb{R}_2[X]$. Mais si $P \in \mathbb{R}_2[X]$ alors r(P) = P donc on a aussi : $\mathbb{R}_2[X] \subset \operatorname{Im} r$ et donc $\operatorname{Im} r = \mathbb{R}_2[X]$.

Références