Pas de titre

Emmanuel Vieillard-Baron¹, Alain Soyeur², and François Capaces³

¹Enseignant en CPGE, Lycée Kléber, Strasbourg ²Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse

2 janvier 2022

Exercice $0.1 \longrightarrow \bigstar \bigstar$ Pas de titre

Dans le repère canonique du plan, on considère deux points sur les axes $A \begin{vmatrix} \lambda \\ 0 \end{vmatrix}$ et $B \begin{vmatrix} 0 \\ a - \lambda \end{vmatrix}$. On

note C le point tel que (OACD) soit un rectangle. On note \mathcal{D}_{λ} la perpendiculaire à la droite (AB) passant par C. Montrer que la droite \mathcal{D}_{λ} passe par un point fixe à déterminer lorsque λ varie.

Solution : $C \begin{vmatrix} \lambda \\ a - \lambda \end{vmatrix}$. Pour obtenir l'équation cartésienne de \mathcal{D}_{λ} , on traduit $\overrightarrow{CM}.\overrightarrow{BA} = 0$ et l'on trouve

$$\mathcal{D}_{\lambda} : \lambda x + (\lambda - a)y - 2a\lambda + a^2 = 0$$

que l'on peut écrire comme un polynôme en λ :

$$\lambda(x + y - 2a) + (-ay + a^2) = 0.$$

En considérant le point $I \begin{vmatrix} x \\ y \end{vmatrix}$ avec x et y qui annulent les deux coefficients de ce polynôme, on

trouve le point fixe $I \begin{vmatrix} a \\ a \end{vmatrix}$

Références