Pas de titre

Emmanuel Vieillard-Baron¹, Alain Soyeur², and François Capaces³

 $^1{\rm Enseignant}$ en CPGE, Lycée Kléber, Paris $^2{\rm Enseignant}$ en CPGE, Lycée Pierre de Fermat, Toulouse 3

6 avril 2023

Exercice 0.1 *** Pas de titre

Soit un K-espace vectoriel E de dimension finie n et un endomorphisme $f \in L(E)$. Montrer l'équivalence entre les propriétés suivantes :

1. $E = \operatorname{Im} f + \operatorname{Ker} f$

4. Im $f = \text{Im } f^2$

- 2. $E = \operatorname{Im} f \oplus \operatorname{Ker} f$
- 3. Im $f \cap \operatorname{Ker} f = \{0\}$

5. Ker $f = \text{Ker } f^2$.

Solution:

- 1. $\boxed{1)\Rightarrow 2}$ Comme $E=\operatorname{Im} f+\operatorname{Ker} f$, en appliquant la formule de Grassmann puis la formule du rang, $\dim (\operatorname{Im} f \cap \operatorname{Ker} f) = \dim \operatorname{Im} f + \dim \operatorname{Ker} f \dim E = 0$ et $\operatorname{Im} f \cap \operatorname{Ker} f = \{0\}$. Donc $E=\operatorname{Im} f \oplus \operatorname{Ker} f$.
- 2. $2 \Rightarrow 3$ Par définition.
- 3. $3 \Rightarrow 2$ Par la formule du rang.
- 4. $2) \Rightarrow 4$ Il est clair que $\operatorname{Im} f^2 \subset \operatorname{Im} f$. Soit $y \in \operatorname{Im} f$ alors il existe $x = x_1 + x_2 \in \operatorname{Im} f \oplus \operatorname{Ker} f$ tel que y = f(x). Alors $y = f(x_1) \in \operatorname{Im} f^2$ car $x_1 \in \operatorname{Im} f$. Donc $\operatorname{Im} f \subset \operatorname{Im} f^2$ et on a bien $\operatorname{Im} f = \operatorname{Im} f^2$.
- 5. $\boxed{4) \Rightarrow 5}$ Il est clair que Ker $f \subset \operatorname{Ker} f^2$. On utilise la formule du rang : $n = \dim \operatorname{Ker} f + \dim \operatorname{Im} f = \dim \operatorname{Ker} f^2 + \dim \operatorname{Im} f^2$. Comme $\operatorname{Im} f = \operatorname{Im} f^2$, il vient que $\dim \operatorname{Ker} f = \dim \operatorname{Ker} f^2$. Finalement, $\operatorname{Ker} f = \operatorname{Ker} f^2$.
- 6. $5 \Rightarrow 4$ se prouve de la même façon.
- 7. $5 \Rightarrow 3$ Soit $x \in \text{Im } f \cap \text{Ker } f$ alors f(x) = 0 et il existe $x_0 \in E$ tel que $x = f(x_0)$. Donc $f^2(x_0) = 0$ et $x_0 \in \text{Ker } f^2 = \text{Ker } f$. Alors $x = f(x_0) = 0$ et $\text{Im } f \cap \text{Ker } f = \{0\}$.
- 8. $(3) \Rightarrow 1$ C'est une conséquence directe de la formule de Grassmann.

On vérifie que la chaine d'implications est bien fermée.

Références