Pas de titre

Alain Soyeur¹, Emmanuel Vieillard-Baron², and François Capaces³

¹Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse ²Enseignant en CPGE, Lycée Kléber, Strasbourg

22 septembre 2021

Exercice 0.1 ****** Pas de titre

Soit $f \in \mathfrak{L}(E,F)$ avec E et F deux \mathbb{K} -espaces vectoriels tels que dim E = n et dim F = p. Dire, pour chacune des phrases suivantes, si elle caractérise l'injectivité, la surjectivité ou la bijectivité de f:

- 1. L'image de toute famille libre de E par f est libre
- 2. Im f = F
- 3. L'image d'une base de E par f est génératrice de F.
- 4. $\operatorname{rg} f = n$.
- 5. L'image d'une base de E par f est libre.
- 6. $\operatorname{rg} f = p$.
- 7. L'image d'une base de E par f est une base de F.
- 8. L'image de toute famille génératrice de E par f est génératrice de F.
- 9. $\exists g \in \mathfrak{L}(F, E), \quad g \circ f = \mathrm{id}_E$
- 10. $\exists g \in \mathfrak{L}(F, E), \quad f \circ g = \mathrm{id}_F$

Solution:

- 1. Supposons que l'image de toute famille libre est libre. Montrons que f est injective. Considérons une base e de E et un vecteur $x \in E$ tel que f(x) = 0. Notons $(x_1, \ldots, x_n) \in \mathbb{R}^n$ les coordonnées de x dans la base e. On a donc : $0 = f(x) = \sum_{k=0}^n x_i f(e_i)$. Mais la famille $e = (e_1, \ldots, e_n)$ étant libre, il en est de même de la famille $(f(e_1), \ldots, f(e_n))$. L'égalité précédente n'est donc vraie que si $x_1 = \cdots = x_n = 0$ et alors x = 0. On a ainsi montré que $Ker f = \{0\}$ et que f est injective.
- 2. Si Im f = F alors f est surjective.
- 3. Si l'image d'une base $e = (e_1, \ldots, e_n)$ de E par f est génératrice de F alors montrons que f est surjective. Soit $y \in F$. La famille $(f(e_1), \ldots, f(e_n))$ est donc génératrice de f et il existe des scalaires $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ tels que $y = \alpha_1 f(e_1) + \cdots + \alpha_n f(e_n) = f(\alpha_1 e_1 + \cdots + \alpha_n e_n)$. Par conséquent, y = f(x) avec $x = \alpha_1 e_1 + \cdots + \alpha_n e_n$ et f est bien surjective.
- 4. Si rg f=n alors f est injective. En effet, d'après la formule du rang, on a : dim $E=\dim \operatorname{Ker} f+\operatorname{rg} f$ et il vient que dim $\operatorname{Ker} f=0$ c'est-à-dire que $\operatorname{Ker} f=\{0\}$.

- 5. Si l'image d'une base $e = (e_1, \ldots, e_n)$ de E par f est libre dans F alors montrons que f est injective. Soit $x \in E$ tel que f(x) = 0 et soit (x_1, \ldots, x_n) les coordonnées de x dans la base E. Alors $0 = f(x) = \sum_{k=0}^{n} x_i f(e_i)$. On termine alors comme dans la première question et on montre que x = 0 c'est-à-dire que f est injective.
- 6. Si rg f = p alors par définition du rang d'une application linéaire, dim Im $f = p = \dim F$ et donc Im f = F. On prouve ainsi que f est surjective.
- 7. Si l'image d'une base de E par f est une base de F alors en appliquant les résultats des questions 3) et 5), il vient que f est bijective.
- 8. Si l'image de toute famille de E par f est génératrice de F alors en particulier l'image d'une base de e est génératrice de F et appliquant la question 3, f est surjective.
- 9. Si il existe $g \in \mathfrak{L}(F, E)$ tel que $g \circ f = \mathrm{id}_E$ alors g est surjective et f injective. Pour que f soit surjective, il faudrait supposer de plus que $\dim F = \dim E$.
- 10. Si il existe $g \in \mathfrak{L}(F, E)$ tel que $f \circ g = \mathrm{id}_F$ alors f est surjective et g injective. Pour que f soit injective, il faudrait supposer de plus que $\dim F = \dim E$.

Références