Pas de titre

Emmanuel Vieillard-Baron¹, Alain Soyeur², and François Capaces³

¹Enseignant en CPGE, Lycée Kléber, Strasbourg ²Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse

13 mai 2023

Exercice 0.1 \bigstar Pas de titre

Soit E l'ensemble des fonctions dérivables sur [0,1] et $\delta: \left\{ \begin{array}{ccc} E & \longrightarrow & \mathbb{R} \\ f & \longrightarrow & f'(0) \end{array} \right.$

- 1. Montrer que E est un \mathbb{R} -espace vectoriel.
- 2. On pose $H = \text{Ker } \delta$. Trouver un supplémentaire de H dans E.

Solution:

- 1. On montre facilement que E est un \mathbb{R} -espace vectoriel en prouvant que c'est un sous-espace vectoriel de $\mathscr{F}([0,1],\mathbb{R})$.
- 2. Montrons que l'ensemble des fonctions affines sur [0,1], noté I, est un supplémentaire de H dans E. Soit $f \in E$. Alors f = (f f'(0)x) + f'(0)x. Il est clair que $x \mapsto f f'(0)x \in H$ et que $x \mapsto f'(0)x \in I$. Donc E = H + I. Si $f \in H \cap I$ alors f'(0) = 0 et il existe $a \in \mathbb{R}$ tel que $f : x \mapsto ax$. Alors a = 0 et f = 0. Donc H et I sont en somme directe. En conclusion, $E = H \oplus I$.

Références