Pas de titre

Alain Soyeur¹, Emmanuel Vieillard-Baron², and François Capaces³

¹Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse ²Enseignant en CPGE, Lycée Kléber, Strasbourg

22 septembre 2021

Exercice $0.1 \longrightarrow \star$ Pas de titre

Soient E un \mathbb{K} -espace vectoriel et $f,g\in E^*$ deux formes linéaires telles que $\forall x\in E,$ $f(x)g(x)=0_K$. Montrer que f=0 ou g=0.

Solution : Si il existe $a \in E$ tel que $f(a) \neq 0$ et $b \in E$ tel que $g(b) \neq 0$, alors

0 = f(a + b)g(a + b) = f(a)g(a) + f(a)g(b) + f(b)g(a) + f(b)g(b) = f(a)g(b) + f(b)g(a).

Donc f(a) g(b) = -f(b) g(a) et comme $f(a) \neq 0$, $g(b) \neq 0$, nécessairement $f(b) \neq 0$ et $g(a) \neq 0$. Il vient alors que f(a) $g(a) \neq 0$ ce qui est contraire à notre hypothèse de départ. Donc f = 0 ou g = 0.

Références