Pas de titre

Alain Soyeur¹, Emmanuel Vieillard-Baron², and François Capaces³

¹Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse ²Enseignant en CPGE, Lycée Kléber, Strasbourg

22 septembre 2021

Exercice 0.1 \bigstar Pas de titre

Soit un \mathbb{K} -espace vectoriel E et un endomorphisme $k \in \mathrm{GL}(E)$. On considère l'application

$$\varphi_k: \left\{ \begin{array}{ccc} L(E) & \longrightarrow & L(E) \\ u & \longmapsto & k \circ u \end{array} \right.$$

Montrer que $\varphi_k \in \mathrm{GL}(L(E))$ puis que l'application

$$\psi: \left\{ \begin{array}{ccc} \operatorname{GL}(E) & \longrightarrow & \operatorname{GL}(L(E)) \\ k & \longmapsto & \varphi_k \end{array} \right.$$

est un morphisme de groupes injectif.

Solution : On vérifie que φ_k est linéaire. Soient $\alpha, \beta \in \mathbb{K}$ et $u, v \in L(E)$. On a $\varphi_k(\alpha u + \beta v) = k \circ (\alpha u + \beta v) = \alpha k \circ u + \beta k \circ v = \alpha \varphi_k(u) + \beta \varphi_k(v)$ par linéarité de k.

L'application φ_k est bien à valeurs dans L(E) car la composée de deux applications linéaires est encore linéaire.

Enfin, φ_k est bijective. En effet, comme k est inversible, on a $\varphi_k \circ \varphi_{k^{-1}} = \varphi_{k^{-1}} \circ \varphi_k = \mathrm{id}_{L(E)}$. Soient $k, k' \in \mathrm{GL}(E)$. On a $\psi(k \circ k') = \varphi_{k \circ k'} = \varphi_k \circ \varphi_{k'}$ donc ψ est un morphisme de groupes. De plus, si $k \in \mathrm{Ker}\,\psi$ alors $\psi(k) = \mathrm{id}_E$ donc $\varphi_k = \mathrm{id}_E$ ce qui n'est possible que si $k = \mathrm{id}_E$ donc $\mathrm{Ker}\,\psi = \{\mathrm{id}_E\}$ et ψ est injectif.

Références