Pas de titre

Alain Soyeur¹, Emmanuel Vieillard-Baron², and François Capaces³

¹Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse ²Enseignant en CPGE, Lycée Kléber, Strasbourg ³, ,

22 septembre 2021

Exercice 0.1 $\bigstar \bigstar$ Pas de titre

Soit E un \mathbb{R} -espace vectoriel et F un sous-espace vectoriel de E. On pose $G = E \setminus F$. Soit $f \in L(E)$ tel que

$$\forall x \in G, f(x) = 2x$$

Montrer que f = 2 id.

Solution : Soient $x \in F$ et $x' \in G$. Alors $x + x' \in G$ car sinon, $x + x' \in F$ et comme $x \in F$ et que F est un sous-espace vectoriel de E, $x' \in F$ ce qui n'est pas possible.

Par linéarité de f, f(x+x') = f(x) + f(x') et donc 2(x+x') = f(x) + 2x'. On en déduit que f(x) = 2x et donc que $f|_F = 2$ id. En conclusion, f = 2 id.

Références