Pas de titre

Alain Soyeur¹, Emmanuel Vieillard-Baron², and François Capaces³

 $^1{\rm Enseignant}$ en CPGE, Lycée Pierre de Fermat, Toulouse $^2{\rm Enseignant}$ en CPGE, Lycée Kléber, Strasbourg 3

22 septembre 2021

Exercice 0.1 ** ** Pas de titre

Soit E un \mathbb{K} -espace vectoriel et $g \in L(E)$. On définit :

$$\varphi:\left\{\begin{array}{ccc}L\left(E\right)&\longrightarrow&L\left(E\right)\\f&\longmapsto&gof\end{array}\right.$$

On admettra que dans un espace vectoriel, tout sous-espace vectoriel admet un supplémentaire.

- 1. Montrer que φ est linéaire
- 2. Montrer que φ est injective si et seulement si g est injective
- 3. Montrer que φ est bijective si et seulement si g est bijective.

Solution:

- 1. Facile.
- 2. Supposons que φ soit injective. Soit $x_0 \in E$ tel que $g(x_0) = 0$. Par l'absurde, supposons que $x_0 \neq 0$. Posons $F = Vect(x_0)$ et considérons un supplémentaire G de F dans E. Considérons aussi l'application linéaire $f \in L(E)$ donnée par

$$f: \left\{ \begin{array}{ccc} E = F \oplus G & \longrightarrow & E \\ x = \alpha x_0 + x_G & \longmapsto & \alpha x_0 \end{array} \right..$$

Alors $\varphi(f) = g \circ f = 0 = \varphi(0)$. Comme φ est injective, il vient que f = 0 ce qui n'est pas possible. Donc $x_0 = 0$ et g est injective.

- Réciproquement, si g est injective et s'il existe $f \in L(E)$ telle que $\varphi(f) = 0$ alors pour tout $x \in E$, $g \circ f(x) = 0$ et donc pour tout $x \in E$, $f(x) \in \text{Ker } g = \{0\}$. Il vient alors que $\forall x \in E$, f(x) = 0 autrement dit que f = 0. En conclusion φ est injective..
- 3. Supposons que φ est surjective. Soit $y \in E$. Il existe $f \in L(E)$ tel que $\varphi(f) = \mathrm{id}$. Donc g(f(y)) = y et $y \in \mathrm{Im}\, g$. On a prouvé que g est surjective.

— Si g est bijective, montrons qu'il en est de même de φ . On sait déjà que φ est injective. Il reste à montrer qu'elle est surjective. Soit $f \in L(E)$. Comme g est bijective, pour tout $x \in E$, il existe un unique $x_f \in E$ tel que $g(x_f) = f(x)$. On définit ainsi une application $f_0: \begin{cases} E \longrightarrow E \\ x \longmapsto x_f \end{cases}$. Cette application est linéaire. En effet, si $x, x' \in E$ et $\alpha, \alpha' \in \mathbb{K}$ alors $f_0(\alpha x + \alpha' x') = (\alpha x + \alpha' x')_f$ avec $(\alpha x + \alpha' x')_f$ tel que

$$\begin{split} g\left((\alpha x + \alpha' x')_f\right) &= \quad f\left(\alpha x + \alpha' x'\right) \text{ par d\'efinition de } (\alpha x + \alpha' x')_f\\ &= \quad \quad \alpha f\left(x\right) + \alpha' f\left(x'\right) \text{ par lin\'earit\'e de } f\\ &= \quad \alpha g\left(x_f\right) + \alpha' g\left(x'\right) \text{ par d\'efinition de } x_f \text{ et } x'_f\\ &= \quad \quad g\left(\alpha x_f + \alpha' x'_f\right) \text{ par lin\'earit\'e de } g \end{split}$$

donc par injectivité de g, $(\alpha x + \alpha' x')_f = \alpha x_f + \alpha' x'_f$ et $f_0(\alpha x + \alpha' x') = \alpha f_0(x) + \beta f_0(x')$. On en déduit que $f_0 \in L(E)$. De plus, par construction, $g \circ f_0 = f$ et φ est bien surjective.

Références