Pas de titre

Alain Soyeur¹, Emmanuel Vieillard-Baron², and François Capaces³

¹Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse ²Enseignant en CPGE, Lycée Kléber, Strasbourg ³. .

22 septembre 2021

Exercice $0.1 \longrightarrow \bigstar$ Pas de titre

Soient f et g deux endomorphismes d'un \mathbb{K} -espace vectoriel E.

- 1. Montrer que Im $f \subset \operatorname{Ker} g \iff gof = 0$.
- 2. Montrer que $f \circ g = g \circ f \Rightarrow \text{Ker } g \text{ est stable par } f$.
- 3. Montrer que $gof = id \Rightarrow f$ injective.

Solution:

- 1. Si $\operatorname{Im} f \subset \operatorname{Ker} g$ alors pour tout $x \in E$, $f(x) \in \operatorname{Im} f \subset \operatorname{Ker} g$ donc g(f(x)) = 0. Donc $g\circ f = 0$. Réciproquement, si $g\circ f = 0$ et si $y \in \operatorname{Im} f$ alors il existe $x \in E$ tel que y = f(x) et g(y) = g(f(x)) = 0 donc $y \in \operatorname{Ker} f$. On a alors bien $\operatorname{Im} f \subset \operatorname{Ker} f$.
- 2. Soit $x \in \text{Ker } g$. Alors g(f(x)) = f(g(x)) = f(0) = 0 donc $f(x) \in \text{Ker } g$ et Ker g est stable par f.
- 3. Si gof = id et si $x \in Ker f$ alors $0 = g(0) = g \circ f(x) = id(x) = x$. Donc x = 0 et $Ker f = \{0\}$. On en déduit que f est injective.

Références