Pas de titre

Emmanuel Vieillard-Baron¹, Alain Soyeur², and François Capaces³

¹Enseignant en CPGE, Lycée Kléber, Strasbourg ²Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse

16 avril 2024

Exercice 0.1 \bigstar Pas de titre

Soit

$$\theta: \left\{ \begin{array}{ccc} \mathcal{C}^{0}\left(\left[-1,1\right],\mathbb{R}\right) & \longrightarrow & \mathbb{R} \\ f & \longmapsto & \int_{-1}^{1} f\left(t\right) \, dt \end{array} \right..$$

- 1. Prouver que θ est une forme linéaire.
- 2. θ est-elle injective?
- 3. Démontrer que θ est surjective.

Solution:

- 1. On montre facilement que θ est linéaire. Comme θ est à valeur dans \mathbb{R} , c'est une forme linéaire.
- 2. On a : $\int_{-1}^{1} t \, dt = 0$ donc $\mathrm{id}_{[-1,1]} \in \mathrm{Ker}\, \theta$. θ n'est donc par injective.
- 3. Montrons que θ est surjective : soit $\alpha \in \mathbb{R}$. Montrons qu'il existe $f \in \mathcal{C}^0([-1,1],\mathbb{R})$ telle que $\int_{-1}^1 f(t) dt = \alpha$. Il suffit de considérer par exemple la fonction constante $f: \left\{ \begin{array}{ccc} [-1,1] & \longrightarrow & \mathbb{R} \\ t & \longmapsto & \frac{\alpha}{2} \end{array} \right.$. On a bien $\theta(f) = \alpha$. θ est donc surjective.

Références