Équations trigonométriques

Alain Soyeur¹, Emmanuel Vieillard-Baron², and François Capaces³

¹Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse ²Enseignant en CPGE, Lycée Kléber, Strasbourg

22 septembre 2021

Exercice 0.1 $\bigstar \star$ Équations trigonométriques

Résoudre les équations trigonométriques suivantes :

1. $\cos(2x) + \cos(x) = -1$

3. $\cos x + \cos 2x + \cos 3x = -1$

 $2. \cos^4 x + \sin^4 x = 1$

Solution:

- 1. On utilise les formules de duplication : $\cos(2x) + \cos(x) = -1 \Leftrightarrow 2\cos^2 x 1 + \cos x = -1 \Leftrightarrow \cos x \ (2\cos x + 1) = 0 \Leftrightarrow \cos x = 0 \text{ ou } \cos x = -\frac{1}{2} \Leftrightarrow x = \frac{\pi}{2} \ [\pi] \text{ ou } x = \left(\pi + \frac{\pi}{3}\right) \ [2\pi] = \frac{4\pi}{3} \ [2\pi] \text{ ou } x = -\frac{4\pi}{3} \ [2\pi].$
- 2. On utilise les linéarisations effectuées dans l'exercice ?? et on obtient : $\cos^4 x + \sin^4 x = 1 \iff \cos(4x) = 1 \iff 4x = 0 \ [2\pi] \iff x = 0 \ [\pi/2].$
- 3. On utilise les calculs de l'exercice ??. On sait que $\cos(2x) = \cos^2 x 1$ et que $\cos(3x) = 4\cos^3 x 3\cos x$, donc $\cos x + \cos 2x + \cos 3x = -1 \iff 2\cos^3 x + \cos^2 x \cos x = 0 \iff \cos x \left(2\cos^2 x + \cos x 1\right) = 0$. Afin de résoudre $2\cos^2 x + \cos x 1 = 0$, on pose $X = \cos x$ et on cherche les racines de $2X^2 + X 1 = 0$ qui sont 1/2 et -1. Donc $2\cos^2 x + \cos x 1 = 0$ si et seulement si $\cos x = 1/2 \iff x = \pm \pi/3$ $[2\pi]$ ou $\cos x = -1 \iff x = \pi$ $[2\pi]$. Finalement les solutions de l'équation initiale sont : $x = \pi/2$ $[\pi]$, $x = \pm \pi/3$ $[2\pi]$ et $x = \pi$ $[2\pi]$.

Références