Étude de convergence **
15 mars 2024 22:26
— Par Michel Quercia
Étudier la convergence des intégrales suivantes :
\(\int _{t=-\infty }^{+\infty }
\dfrac{d t}{e^t+t^2 e^{-t}}\)
\(\int _{t=1}^{+\infty } \dfrac{e^{\sin
t}}t\,d t\)
\(\int _{t=0}^1 \dfrac{t^\alpha
-1}{\ln t}\,d t\)
\(\int _{t=e^2 }^{+\infty } \dfrac{d
t}{t(\ln t)(\ln\ln t)}\)
\(\int _{t=0}^{+\infty } \ln\Bigl(
\dfrac{1+t^2 }{1+t^3}\Bigr)\,d t\)
\(\int _{t=0}^{+\infty }
\Bigl(2+(t+3)\ln\bigl(\dfrac{t+2}{t+4}\bigr)\Bigr)d t\)
\(\int _{t=0}^{+\infty } \dfrac{t\ln
t}{(1+t^2 )^\alpha }\,d t\)
\(\int _{t=0}^1 \dfrac{d t}{1-\sqrt
t}\)
\(\int _{t=0}^{+\infty }
\dfrac{(t+1)^\alpha -t^\alpha }{t^\beta }\,d t\)
\(\int _{t=0}^{+\infty } \sin(t^2 )\,d
t\)
\(\int _{t=0}^1 \dfrac{d t}{\arccos
t}\)
\(\int _{t=0}^{+\infty }
\dfrac{\ln(\arctan t)}{t^\alpha }\,d t\)
\(\int _{t=1}^{+\infty }
\dfrac{\ln(1+1/t)\,d t}{(t^2 -1)^\alpha }\)
\(\int _{t=0}^1 \dfrac{|\ln t|^\beta
}{(1-t)^\alpha } \,d t\)
\(\int _{t=0}^{+\infty } t^\alpha
\bigl(1-e^{-1/\sqrt t}\,\bigr)\,d t\)
\(\int
_{t=0}^1 \sin(1/t)e^{-1/t}t^{-k}\,d t\)