Représentation matricielle d'une application linéaire

Dans le dossier «Représentation matricielle d'une application linéaire»

Exercices dans ce dossier

Exercice

Exercice 496 *

1 avril 2021 11:46 — Par Emmanuel Vieillard-Baron Alain Soyeur François Capaces

Pour chacune des applications linéaires suivantes :

  1. vérifier que \(u\) est linéaire.

  2. déterminer sa matrice dans les bases canoniques des espaces vectoriels considérés.

  3. déterminer son rang.

  4. Déterminer \(u^{-1}\) quand cette application existe.

  5. calculer l’image du vecteur \(V\) donné en utilisant cette matrice.

  1. \(u: \left\{ \begin{array}{ccl} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^2 \\ \left(x,y,z\right) & \longmapsto & \left(x+y+z,x-2y-3z\right) \end{array} \right.\) et \(V=\left(0,1,-1\right)\)..

  2. \(u: \left\{ \begin{array}{ccl} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ \left(x,y,z\right) & \longmapsto & \left(x+z,y-z,z-x\right) \end{array} \right.\) et \(V=\left(1,2,-1\right)\).

  3. On pose \(\overrightarrow{v}=\left(1,1,1\right)\). \(u: \left\{ \begin{array}{ccl} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ \overrightarrow{u} & \longmapsto & \overrightarrow{u} \wedge \overrightarrow{v} \end{array} \right.\) et \(V=\left(-1,0,2\right)\).

  4. \(u: \left\{ \begin{array}{ccl} \mathbb{R}_3\left[X\right] & \longrightarrow & \mathbb{R}_3\left[X\right] \\ P & \longmapsto & XP'\left(X\right) -P \end{array} \right.\) et \(V=X^3-3X^2+X-1\).

  5. \(u: \left\{ \begin{array}{ccl} \mathbb{R}_2\left[X\right] & \longrightarrow & \mathbb{R}^3 \\ P & \longmapsto & \left(P\left(0\right),P\left(1\right),P\left(2\right)\right) \end{array} \right.\) et \(V=X^2-X+1\).

  6. \(u: \left\{ \begin{array}{ccl} \mathfrak{M}_{2}\left(\mathbb{R}\right) & \longrightarrow & \mathfrak{M}_{2}\left(\mathbb{R}\right) \\ M & \longmapsto & {M}^{\mathrm{T}} \end{array} \right.\) et \(V= \begin{pmatrix} 1&-1\\ 0&1 \end{pmatrix}\).

  7. \(u: \left\{ \begin{array}{ccl} \mathfrak{M}_{2}\left(\mathbb{R}\right) & \longrightarrow & \mathfrak{M}_{2}\left(\mathbb{R}\right) \\ M & \longmapsto & EM \end{array} \right.\)\(E=\begin{pmatrix} 1&1\\ 0&1 \end{pmatrix}\) et \(V= \begin{pmatrix} 0&1\\ 1&0 \end{pmatrix}\)

;
Success message!