1. Soient \(A_{1},A_{2},\dots,A_n\) des évènements. On veut prouver la formule du crible : \[\mathbb P (A_{1}\cup \dots\cup A_n) = \sum_i\mathbb P (A_i) - \sum_{i<j}\mathbb P (A_i\cap A_j) + \sum_{i<j<k}\mathbb P (A_i\cap A_j\cap A_k) - \dots+ (-1)^{n-1}\mathbb P (A_{1}\cap \dots\cap A_n).\]

    1. Traiter les cas \(n=2\) et \(n=3\).

    2. Pour le cas général, on note \(\mathbb 1 _A\) la fonction indicatrice de l’évènement \(A\). Exprimer \(\mathbb 1 _{\overline{A_{1}\cup \dots\cup A_n}}\) en fonction des \(\mathbb 1 _{A_i}\) et calculer son espérance.

  2. Soit \(\sigma \in S_n\). On dit que \(\sigma\) est un dérangement si \(\sigma (i)\neq i\) pour tout \(i\). Quelle est la probabilité qu’une permutation choise au hasard soit un dérangement ?

  3. La société Burgundy Snail Inc. reçoit chaque semaine 6000 escargots vivants. Elle les fait bouillir ensemble dans une grande marmite ce qui a pour effet (entre autres) de détacher chaque escargot de sa coquille. Les escargots bouillis flottent à la surface et les coquilles tombent au fond de la marmite. Une chaîne de traitement récupère les escargots et les assaisonne ; une autre chaîne récupère les coquilles, les nettoie et les fait briller. Puis escargots et coquilles rejoignent une troisième chaîne qui place chaque escargot dans une coquille et les emballe par boîtes de 12. On demande :

    1. La probabilité que chaque escargot se retrouve dans sa coquille d’origine.

    2. La probabilité qu’aucun escargot ne se retrouve dans sa coquille d’origine.

    3. La probabilité que chaque boite de 12 escargots contienne exactement un escargot qui est dans sa coquille d’origine.


Barre utilisateur

[ID: 4856] [Date de publication: 16 avril 2024 14:09] [Catégorie(s): Calculs de probabilités ] [ Nombre commentaires: 0] [nombre d'éditeurs: 1 ] [Editeur(s): Emmanuel Vieillard-Baron ] [nombre d'auteurs: 1 ] [Auteur(s): Michel Quercia ]




Solution(s)

Solution(s)

Documents à télécharger