Étudier la suite de terme général \[\displaystyle{u_n=\sum_{k=1}^n {\scriptstyle 1\over\scriptstyle\sqrt k} }\]


Barre utilisateur

[ID: 410] [Date de publication: 12 janvier 2021 15:01] [Catégorie(s): Encadrements ] [ Nombre commentaires: 1] [nombre d'éditeurs: 1 ] [Editeur(s): Emmanuel Vieillard-Baron ] [nombre d'auteurs: 3 ] [Auteur(s): Emmanuel Vieillard-Baron Alain Soyeur François Capaces ]




Solution(s)

Solution(s)

Exercice 784
Par emmanuel le 12 janvier 2021 15:01

Pour tout \(n\geqslant 1\) : \[\sum_{k=1}^n {\scriptstyle 1\over\scriptstyle\sqrt k} \geqslant\sum_{k=1}^n {\scriptstyle 1\over\scriptstyle\sqrt n} ={\scriptstyle n\over\scriptstyle\sqrt n} = \sqrt n\] et \(\sqrt n \xrightarrow[n\rightarrow +\infty]{} +\infty\) donc par comparaison, \(\boxed{u_n \xrightarrow[n\rightarrow +\infty]{} +\infty}\).


Documents à télécharger