Prouver la convergence des intégrales suivantes puis les calculer :

  1. \(\int _{t=2}^{+\infty } \dfrac{e^t\,d t}{(e^{2t}-5e^t+6)(e^t-1)}\)

  2. \(\int _{t=0}^{+\infty } \dfrac{d t}{\mathop{\rm ch}\nolimits^4 t+\mathop{\rm sh}\nolimits^4 t}\)

  3. \(\int _{t=0}^{+\infty } te^{-\sqrt t} \,d t\)

  4. \(\int _{t=0}^1 \arcsin t \,d t\)

  5. \(\int _{t=0}^1 \dfrac{\ln(1-t^2 )}{t^2 }\,d t\)

  6. \(\int _{t=0}^{+\infty } \dfrac{t^3\ln t}{(1+t^4 )^3}\,d t\)

  7. \(\int _{t=0}^{\pi /2} \ln\sin t\,d t\)

  8. \(\int _{t=0}^1 \dfrac{\ln t}{\sqrt {1-t}}\,d t\)

  9. \(\int _{t=0}^{+\infty } \dfrac{\ln t}{1+t^2 }\,d t\)

  10. \(\int _{t=0}^1 \dfrac{\ln t}{(1+t)\sqrt {1-t^2 }}\,d t\)

  11. \(\int _{t=0}^1 \dfrac{d t}{\sqrt {1+t}+\sqrt {1-t}}\)

  12. \(\int _{t=0}^{+\infty } \ln\Bigl(1+\dfrac{a^2 }{t^2 }\Bigr)\,d t\)

  13. \(\int _{t=0}^{+\infty }\ln\left|\dfrac{1+t}{1-t}\right|\dfrac{t\,d t}{(a^2 +t^2 )^2 }\)


Barre utilisateur

[ID: 3904] [Date de publication: 15 mars 2024 22:08] [Catégorie(s): Calculs d'intégrales généralisées ] [ Nombre commentaires: 1] [nombre d'éditeurs: 1 ] [Editeur(s): Emmanuel Vieillard-Baron ] [nombre d'auteurs: 1 ] [Auteur(s): Michel Quercia ]




Solution(s)

Solution(s)

Calcul, divers
Par Michel Quercia le 15 mars 2024 22:08
  1. \(\int _{t=2}^{+\infty } \dfrac{e^t\,d t}{(e^{2t}-5e^t+6)(e^t-1)}\) \(\ln(\frac{e^2 -2}{\sqrt {e^4 -4e^2 +3}})\)

  2. \(\int _{t=0}^{+\infty } \dfrac{d t}{\mathop{\rm ch}\nolimits^4 t+\mathop{\rm sh}\nolimits^4 t}\) \(\frac1{\sqrt 2}\ln(\sqrt 2+1)\)

  3. \(\int _{t=0}^{+\infty } te^{-\sqrt t} \,d t\) \(12\)

  4. \(\int _{t=0}^1 \arcsin t \,d t\) \(\frac\pi 2 - 1\)

  5. \(\int _{t=0}^1 \dfrac{\ln(1-t^2 )}{t^2 }\,d t\) \(-2\ln 2\)

  6. \(\int _{t=0}^{+\infty } \dfrac{t^3\ln t}{(1+t^4 )^3}\,d t\) \(-\frac1{32}\)

  7. \(\int _{t=0}^{\pi /2} \ln\sin t\,d t\) \(-\frac{\pi \ln2}2\)

  8. \(\int _{t=0}^1 \dfrac{\ln t}{\sqrt {1-t}}\,d t\) \(4\ln2 - 4\) (\(u = \sqrt {1-t}\))

  9. \(\int _{t=0}^{+\infty } \dfrac{\ln t}{1+t^2 }\,d t\) \(0\) (\(u = 1/t\))

  10. \(\int _{t=0}^1 \dfrac{\ln t}{(1+t)\sqrt {1-t^2 }}\,d t\) \(\ln2 - \frac\pi 2\) (\(u=\sqrt {(1-t)/(1+t)}\))

  11. \(\int _{t=0}^1 \dfrac{d t}{\sqrt {1+t}+\sqrt {1-t}}\) \(\sqrt 2 + \ln(\sqrt 2 - 1)\)

  12. \(\int _{t=0}^{+\infty } \ln\Bigl(1+\dfrac{a^2 }{t^2 }\Bigr)\,d t\) \(\pi |a|\)

  13. \(\int _{t=0}^{+\infty }\ln\left|\dfrac{1+t}{1-t}\right|\dfrac{t\,d t}{(a^2 +t^2 )^2 }\) \(\dfrac{\pi }{2|a|(a^2 +1)}\)


Documents à télécharger