Lecture zen
**
Exercice 33
Déterminer suivant les valeurs des réels \(m,a,b,c\) les solutions du système : \[\left\{ \begin{aligned} mx&+my&+mz&=&a \cr x&+my&+z&=&b \cr x&+y&+mz&=&c \end{aligned}\right.\]
Barre utilisateur
[ID: 1766] [Date de publication: 1 avril 2021 11:57] [Catégorie(s): Systèmes linéaires ] [ Nombre commentaires: 1] [nombre d'éditeurs: 1 ] [Editeur(s): Emmanuel Vieillard-Baron ] [nombre d'auteurs: 3 ] [Auteur(s): Emmanuel Vieillard-Baron Alain Soyeur François Capaces ]Solution(s)
Solution(s)
Exercice 33
Par Emmanuel Vieillard-Baron Alain Soyeur François Capaces le 1 avril 2021 11:57
Par Emmanuel Vieillard-Baron Alain Soyeur François Capaces le 1 avril 2021 11:57
La matrice de ce système linéaire est \(A=\left(\begin{array}{ccc}m&m&m\\1&m&1\\1&1&m \end{array}\right)\) et \(\mathop{\mathrm{rg}}\left(A\right)=\begin{cases} 2 &\textrm{ si } m=0 \\ 1 &\textrm{ si } m=1 \\ 3 &\textrm{ sinon } \end{cases}\).
Documents à télécharger
L'exercice