Plan Vectoriel

[ Definition ]
  • Soient \(\overrightarrow{u}\) et \(\overrightarrow{v}\) deux vecteurs non colinéaires de l’espace \(\mathscr V\). On appelle plan vectoriel engendré (ou dirigé) par les vecteurs \(\overrightarrow{u}\) et \(\overrightarrow{v}\) l’ensemble, noté \(\mathcal P\), des de \(\mathscr V\) qui sont combinaisons linéaires de \(\overrightarrow{u}\) et \(\overrightarrow{v}\) : \[\mathcal P=\left\{\alpha \overrightarrow{u} + \beta \overrightarrow{v} ~|~ \alpha,\beta \in\mathbb{R}\right\}.\]

  • Soient \(\overrightarrow{u}\) et \(\overrightarrow{v}\) deux vecteurs non colinéaires de l’espace \(\mathscr V\) et \(A\in \mathscr E\) un point de l’espace. On appelle plan affine engendré (ou dirigé) par les vecteurs \(\overrightarrow{u}\) et \(\overrightarrow{v}\) et passant par \(A\) l’ensemble, noté \(\mathscr P\), des \(M\) de \(\mathscr E\) tels que le vecteur \(\overrightarrow{AM}\) est combinaison linéaire de \(\overrightarrow{u}\) et \(\overrightarrow{v}\) : \[\mathscr P=\left\{M\in \mathscr E ~|~ \exists \left(\alpha,\beta\right) \in\mathbb{R}^2: \quad \overrightarrow{AM}=\alpha \overrightarrow{u} + \beta \overrightarrow{v} \right\}.\]

En savoir plus