Principe de superposition des solutions

[ Proposition ]
Soient \(a,~b,~b_1,~b_2\) quatre fonctions définies et continues sur \(I\) telles que \(b=b_1+b_2\). On considère les équations différentielles \[\forall t\in I, \quad y'\left(t\right)+a\left(t\right) y\left(t\right)=b\left(t\right) \quad (E)\] \[\forall t\in I, \quad y'\left(t\right)+a\left(t\right) y\left(t\right)=b_1\left(t\right) \quad (E_1)\] \[\forall t\in I, \quad y'\left(t\right)+a\left(t\right) y\left(t\right)=b_2\left(t\right) \quad (E_2)\] Si \(y_1\) et \(y_2\) sont des solutions particulières respectivement de \((E_1)\) et \((E_2)\) alors \(y=y_1+y_2\) est une solution particulière de \((E)\).
En savoir plus