Lecture zen
Caractérisation d’un cercle par l’équation \(\overrightarrow{MA}.\overrightarrow{MB}=0\)
[ Proposition ]
Soit \(\mathscr R (O,\overrightarrow{\imath },\overrightarrow{\jmath})\) un repère orthonormal. Soient \(A(x_A,y_A)\) et \(B(x_B,y_B)\) deux points du plan. Soit \(\mathscr C\) l’ensemble des points \(M\) du plan vérifiant \[\overrightarrow{MA}.\overrightarrow{MB}=0.\] Alors \(\mathscr C\) est le cercle de diamètre \(AB\). Une équation de \(\mathscr C\) est donnée par \[\boxed{(x-x_A)(x-x_B)+(y-y_A)(y-y_B)=0}\]
En savoir plus