Lecture zen
Interprétation du déterminant en terme de projection
[ Proposition ]
Soient \(\overrightarrow{u}\) et \(\overrightarrow{v}\) deux vecteurs de \(\mathscr V\). Soient \(O,\,A,\,B\) trois points de \(\mathscr P\) tels que \(\overrightarrow{OA}=\overrightarrow{u}\) et \(\overrightarrow{OB}=\overrightarrow{v}\). Soit \(H\) le projeté orthogonal de \(B\) sur la droite \((OA)\). Choisissons pour la droite \((BH)\) l’orientation dans le sens directement orthogonale à \(\overrightarrow{OA}\). On a alors : \[\boxed{\mathop{\rm det}(\overrightarrow{u},\overrightarrow{v}) = OA.\overline{HB}.}\] La valeur absolue de ce déterminant correspond à l’aire du parallélogramme construit selon les vecteurs \(\overrightarrow{u}\) et \(\overrightarrow{v}\).
En savoir plus