Coefficients de Fourier de \(f\)

[ Definition ]
Soit \(f\) dans \({\mathfrak L}^1\). On définit les coefficients de Fourier de \(f\) pour \(n\in \mathbb{Z}\) par \[\hat f(n) = \frac1{2\pi}\int_{-\pi}^{\pi} e^{-int}f(t).dt\]

On appelle noyau de Dirichlet d’ordre \(n\) et on note \(D_n\) l’application \(x \mapsto \sum_{i=-n}^n u_i(x)\).

On appelle noyau de Féjer d’ordre \(n\) et on note \(K_n\) l’application \[x \mapsto \frac{\sum_{i=0}^{n-1} D_i}n\]

On note \(s_n(f)\) et on appelle somme de Fourier d’ordre \(n\) la somme \(\sum_{i=-n}^n \hat f(i) u_i\).

On note \(\sigma_n(f)\) et on appelle somme de Féjer d’ordre \(n\) la somme \((\sum_{i=0}^{n-1} s_i)/n\).

On appelle série de Fourier associée à \(f\) la série \[\sum_{n=-\infty}^{+\infty} \hat f(n) e^{int}\]

En savoir plus