Angle

[ Definition ]

L’angle orienté entre deux vecteurs unitaires \(u\) et \(v\) de \(\mathbb{R}^2\) (pris dans cet ordre) est par définition l’unique rotation de \(\mathbb{R}^2\) par laquelle l’image de \(u\) est \(v\).

L’angle orienté entre deux vecteurs non nuls quelconques \(u\) et \(v\) de \(\mathbb{R}^2\) (pris dans cet ordre) est par définition l’angle orienté entre \(\frac{1}{{\parallel}u {\parallel}} u\) et \(\frac{1}{{\parallel}v {\parallel}} v\).

On appelle angle nul l’angle entre \(u\) et \(u\) pour \(u\) vecteur non nul quelconque (la notion ne dépend pas de \(u\)).

On appelle angle plat l’angle entre \(u\) et \(-u\) pour \(u\) vecteur non nul quelconque.

On appelle angle orienté de deux demi-droites \(\mathbb{R}^+ u\) et \(\mathbb{R}^+ v\) l’angle orienté entre \(u\) et \(v\).

Pour tous ces angles, l’angle non orienté correspondant est la paire \(\{r,r^{-1}\}\) avec \(r\) l’angle orienté correspondant.

L’angle orienté de deux droites \(\mathbb{R}u\) et \(\mathbb{R}v\) est la paire des angles entre \(\mathbb{R}^+ u\) et \(\mathbb{R}^+ v\) et entre \(\mathbb{R}^+ u\) et \(\mathbb{R}^- v\).

L’angle non-orienté correspondant est l’ensemble à \(4\) éléments (au plus) constitué des angles orientés entre \(\mathbb{R}^+ u\) et \(\mathbb{R}^+ v\), entre \(\mathbb{R}^+ u\) et \(\mathbb{R}^- v\), et leurs inverses.

Etant donnée une base orthonormée directe de \(\mathbb{R}^2\) et un angle orienté \(r\) entre demi-droites ou entre vecteurs, on appelle mesure de cet angle l’unique \(\theta\in \mathbb{R}/2\pi\mathbb{Z}\) tel que la matrice de \(r\) dans cette base soit \[\left( \begin{array}{cc} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \newline \end{array} \right)\]

Notons que la valeur de \(\theta\) est indépendante du choix de la base orthonormée directe.

On appelle mesure principale d’un angle la mesure de cet angle comprise dans \(]-\pi,\pi]\). On notera \(\widehat{X,Y}\) l’angle orienté entre \(X\) et \(Y\), quelle que soit la nature de \(X\) et \(Y\).
En savoir plus