Polynômes

[ Definition ]
Soit \(A\) un anneau commutatif unitaire (resp. \(\mathbb{K}\) un corps). L’ensemble des suites d’éléments de \(A\) nulles à partir d’un certain rang, noté \(A^{(\mathbb{N})}\), est un \(A\)-module (resp. un \(\mathbb{K}\)-espace vectoriel ) pour l’addition et la multiplication par un scalaire usuelles. En le munissant en outre du produit suivant: \[\times : (u,v) \mapsto w \mbox{ avec } w_n=\sum_{i+j=n} u_i.v_j\] On obtient une \(A\)-algèbre (resp. \(\mathbb{K}\)-algèbre), notée \(A[X]\) (resp. \(\mathbb{K}[X]\)).

Les éléments de \(A[X]\) sont appelés polynômes.

Deux polynômes \(P\) et \(Q\) non nuls sont dits associés s’il existe \({\lambda}\) inversible tel que \(P={\lambda}.Q\).

On identifie \(A\) (resp. \(\mathbb{K}\)) et l’ensemble des suites \((u_n)_{n\in \mathbb{N}}\) avec \(u_n=0\) pour tout \(n>0\), par l’isomorphisme canonique \(x \mapsto (u_n)_{n\in\mathbb{N}} \mbox{ avec } u_0=x \mbox{ et } u_n=0\) pour tout \(n>0\).

On note \(X\) l’élément \((u_n)_{n\in \mathbb{N}}\) avec \(u_0=0\), \(u_1=1\), et \(u_n=0\) pour \(n>1\).

La famille des \(X^i\) pour \(i \in \mathbb{N}\) constitue la base canonique du module libre \(A^{(\mathbb{N})}\) (resp. du \(\mathbb{K}\)-espace vectoriel \(\mathbb{K}^{(\mathbb{N})}\)).

Étant donné \(P\) un polynôme, on appelle degré de \(P\) et on note \(\deg P\) le plus grand \(n\) tel que \(P_n\) est non nul. On appelle coefficient dominant de \(P\) le coefficient de \(X^{\deg P}\) (que l’on peut voir comme \({X^{deg(P)}}^*(P)\) si l’on travaille avec un corps, voir la partie [dualite]); on le note \(coef(P)\).

Un polynôme non nul est dit unitaire si son coefficient dominant est \(1\).

On appelle support d’un polynôme \(P\) l’ensemble des \(n \in \mathbb{N}\) tels que \({X^n}^*(P)\neq 0\). Par définition d’un polynôme, son support est fini.

Le degré d’un polynôme \(P\) est donc aussi le \(\sup\) de son support.

On appelle valuation de \(P\) et on note \(val(P)\) l’\(\inf\) du support de \(P\).

On appelle composé de deux polynômes \(P\) et \(Q\) et on note \(P \circ Q\) le polynôme \(\sum P_n Q^n\) (que l’on peut aussi voir comme \(\sum_{n\in \mathbb{N}} {X^n}^*(P).Q^n\) si l’on travaille avec un corps).
En savoir plus