Définitions de base sur les matrices

[ Definition ]
On appelle matrice de type \((n,p)\) sur un corps \(\mathbb{K}\) toute application de \([\![1,n]\!]\times [\![1,p]\!]\) (intervalles de \(\mathbb{N}\)) dans \(\mathbb{K}\). On la représente généralement comme suit: \[\left( \begin{array}{cccc} m_{1,1} & m_{1,2} & \dots & m_{1,p} \\ m_{2,1} & m_{2,2} & \dots & m_{2,p} \\ \vdots & \vdots &\ddots & \vdots \newline m_{n,1} & m_{n,2} & \dots & m_{n,p} \end{array}\right)\] On note \(M_{n,p}(\mathbb{K})\) l’ensemble des matrices de type \((n,p)\) sur le corps \(\mathbb{K}\).

On appelle matrice ligne une matrice de type \((1,p)\), et matrice colonne une matrice de type \((n,1)\).

On appelle matrice extraite d’une matrice de type \((n,p)\) la restriction de cette matrice à \(I \times J\), avec \(I \subset [\![1,n]\!]\) et \(J \subset [\![1,p]\!]\).

On appelle \(i\)-ième vecteur-ligne de la matrice \(M\) de type \((n,p)\) la restriction de cette matrice à \(\{i\}\times [\![1,p]\!]\). On peut identifier un vecteur-ligne à un élément de \(\mathbb{K}^p\).

On appelle \(j\)-ième vecteur-colonne de la matrice \(M\) de type \((n,p)\) la restriction de cette matrice à \([\![1,n]\!] \times \{j\}\). On peut identifier un vecteur-colonne à un élément de \(\mathbb{K}^n\).

On appelle matrice associée à un morphisme \(f\) de l’espace vectoriel \(E\) de dimension \(p\) dans l’espace vectoriel \(F\) de dimension \(n\) et aux bases \(B=(e_i)\) et \(B'=(f_i)\) de \(E\) et \(F\) respectivement la matrice \(M\) de type \((n,p)\) telle que \(M_{i,j}=f_i^*(e_j)\). On la note \(Mat_{B,B'}(f)\).

Inversement, on appelle application linéaire canoniquement associée à la matrice \(M\) le morphisme de \(\mathbb{K}^p\) dans \(\mathbb{K}^n\) dont la matrice associée est \(M\).
En savoir plus