Anneau

[ Definition ]
Un anneau est un triplet \((A,+,\times)\) tel que

\(\bullet\)\(A\) est un ensemble non vide.

\(\bullet\)\(+\) est une loi de composition interne (c’est-à-dire une application de \(A\times A\) dans \(A\)), telle que \((A,+)\) est un groupe commutatif.

\(\bullet\)\(\times\) est une loi de composition interne associative, ayant un élément neutre, distributive par rapport à \(+\).

On appelle unité de \((A,+,\times)\) tout élément inversible pour \(\times\).

Si en outre \(\times\) est commutative, l’anneau est dit commutatif.

On note \(0\) l’élément neutre pour l’addition, \(1\) l’élément neutre pour la multiplication, le symétrique de \(a \in A\) pour \(+\) est noté \(-a\), et le symétrique, lorsque \(a\) est une unité, de \(a\) pour \(\times\) est noté \(a^{-1}\).

\(a\times b\) sera souvent abrégé \(a.b\) ou même \(ab\).

\(a\) et \(b\) appartenant à \(A\) sont dits associés si \(a=b.x\) pour un certain \(x\) unité. La relation d’association est une relation d’équivalence.

On dit que \(a\) divise \(b\), ou que \(a\) est un diviseur de \(b\), ou que \(b\) est un multiple de \(a\), pour \(a\) et \(b\) dans \(A\), s’il existe \(x\) tel que \(b=a.x\).

On dit que \(a\) est un plus grand commun diviseur ou pgcd des éléments \(a_1,...,a_n\), si pour tout \(i\), \(d|a_i\) et si pour tout \(d'\) \(\forall i\ d'|a_i\) implique \(d'|d\). On dit que \(a\) est un plus petit commun multiple ou ppcm des éléments \(a_1,...,a_n\), si pour tout \(i\), \(a_i|d\) et si pour tout \(d'\), \(\forall i\ a_i|d'\) implique \(d|d'\). \(a\in A\) est dit irréductible si \(a\) n’est pas une unité et si \(b|a\) implique que \(b\) est une unité ou que \(b\) est associé à \(a\).
En savoir plus