Multiplication d’applications \(p\)-linéaires alternées

[ Definition ]

Etant donnée une application \(\phi\) bilinéaire de \(F\times G\) dans \(H\), on définit une multiplication d’applications \(p\)-linéaires alternées par: \[{\cal A}_p(E,F) \times {\cal A}_q(E,G) \to {\cal A}_{p+q}(E,H)\] \[(f,g) \mapsto f \land_\phi g\] définie par \[(f\land_\phi g)(x_1,\dots,x_{p+q})=\sum_{\sigma} \epsilon(\sigma) \phi(f(x_{\sigma(1)},x_{\sigma(2)},\dots,x_{\sigma(p)}),g(x_{\sigma(p+1)},x_{\sigma(p+2)},\dots,x_{\sigma(p+q)}))\] La sommation étant étendue à l’ensemble des permutations \(\sigma\) de \([1,n]\) telles que \(\sigma(1) < \sigma(2) < \dots < \sigma(p)\) et \(\sigma(p+1) < \sigma(p+2) < \dots < \sigma(p+q)\).

En savoir plus