Ensembles équipotents

Bonsoir à tous
Je bute sur l'exercice suivant (pas vraiment de topologie, mais il m'a semblé que c'était le lieu le plus approprié)

Soit $E$ un ensemble infini, et $D$ un sous-ensemble de $E$, au plus dénombrable, tel que $E\setminus D$ (notation pour $E$ privé de $D$) est infini. Il s'agit de montrer que $E$ et $E\setminus D$ sont équipotents.

Mon idée est de considérer $D_1 \subset E\setminus D$ dénombrable, une application $\phi_1$ de $D$ sur $D_1$, au moins surjective, éventuellement bijective, et une application $\phi$ de $E$ sur $E\setminus D$ telle que :
$$
\phi(x) = \left\lbrace \begin{array} x \text{ si } x \in E\setminus D \\ \phi_1(x) \text{ sinon} \end{array} \right.

$$ Évidemment, cette application n'est pas injective. Il faudrait aussi que je déplace les éléments de $D_1$ vers autre chose. J'ai bien pensé à considérer $D_2 \subset E\setminus (D \cup D_1)$, et à envoyer les éléments de $D_1$ vers $D_2$, mais ça ne fait que reporter le problème.

Quelles autres pistes puis-je envisager ?

Réponses

  • Une possibilité est de considérer comme tu l'as fait $D_1 \subset E\setminus D$ dénombrable puis de montrer qu'il existe une bijection $\phi$ entre $D_1$ et $D_1\sqcup D$ (union disjointe).

    Ensuite en remarquant que :

    - $E=(E\setminus (D_1\sqcup D)) \sqcup (D_1\sqcup D)$ et

    - $E\setminus D=(E\setminus (D_1\sqcup D)) \sqcup D_1$

    tu devrais pouvoir facilement définir une bijection entre $E$ et $E\setminus D$ grâce à l'application $\phi$ précédente.
  • Merci beaucoup, ta réponse m'a permis de conclure !
Connectez-vous ou Inscrivez-vous pour répondre.