Topologie usuelle de R et tribu borélienne

Bonjour,

Je me remets actuellement à des notions de topologie et j'aurais besoin d'être bien sûr de quelque chose.

On dit - la plupart du temps - que la topologie "usuelle" de $\mathbb{R}$ est l'ensemble constitué de $\emptyset$, $\mathbb{R}$, et de toute réunion d'intervalles de la forme $]a,b[$, c'est-à-dire les $\bigcup_{i \in I}]a_i, b_i[$.

C'est ce qu'on appelle, si je ne m'abuse, la définition par les ouverts...

Donc, le $I$ dont il est question dans $\bigcup_{i \in I}]a_i, b_i[$, c'est bien un ensemble quelconque, n'est-ce pas ? Il peut être fini, infini dénombrable, infini non dénombrable, n'est-ce pas ?

Je ne me trompe pas ?

Réponses

  • Oui c'est ça, comme dans tout espace topologique. Une base d'une topologie fournit les ouverts de la topologie par des réunions a priori quelconques d'éléments de cette base. Dans le cas de $\mathbb R$, on peut ensuite montrer que c'est la même chose si on ne demande que des réunions au plus dénombrables.
  • Merci. Et désolé pour la question peut-être un peu bête, mais tout ça remonte à si longtemps...
  • Il n'y a pas de question bête !
  • Bonjour
    Une petite vérification SVP...

    On considère $\mathbb{R}$ comme un espace topologique muni de la topologie "usuelle":
    $$T_u(\mathbb{R})=\{\emptyset,\ \mathbb{R},\ \bigcup_{i \in I}\,]a_i,b_i[,\ I \text{ quelconque}\}
    $$ Alors, la tribu borélienne sur $\mathbb{R}$ est la tribu engendrée par les éléments de $T_u(\mathbb{R})$ (les "ouverts"), c'est-à-dire qu'elle contient les éléments suivants :
    $$\emptyset,\quad
    \mathbb{R},\quad
    \bigcup_{i \in I}\,]a_i,b_i[,\quad
    \bigcap_{i \in I}\,[a_i,b_i],\quad
    \bigcap_{n \in \mathbb{N}}\bigcup_{i \in I}\,]a_i,b_i[,\quad
    \bigcup_{n \in \mathbb{N}}\bigcap_{i \in I}\,[a_i,b_i],\quad

    $$ Est-ce qu'en listant cela, je n'oublie rien ?
    Est-ce que c'est une bonne façon d'expliciter les boréliens ? (s'il existe une façon...)
  • Tu en oublies beaucoup. Quid des unions de gens de cette forme là ? Puis d'intersections de telles unions etc
  • Oui, d'accord. Alors, autre forme de la question : est-ce que les éléments listés ne pourraient pas être appelés "éléments fondamentaux", auxquels il faudrait rajouter toutes les unions et intersections possibles ?
    Auquel cas, ne pourrait-on dire :

    "la tribu borélienne sur $\mathbb{R}$ contient les éléments fondamentaux suivants :
    $$ suit \quad ici \quad la \quad liste
    $$ auxquels il faut rajouter toutes les unions et intersections possibles de ces éléments"
  • Non, on ne peut pas : il ne suffit pas de faire les unions d'intersections d'unions d'intersections... d'ouverts et de leurs complémentaires. Sauf erreur, il y a une description explicite dans Mesure et intégration de Daniel Revuz.
  • Mais pourquoi, Math Coss, est-ce que "il ne suffit pas" ?
    Le souci est que je trouve aucune approche de description explicite des boréliens de $\mathbb{R}$ (et je n'arrive pas à accéder au bouquin de Revuz...)
    Est-ce vraiment si compliqué d'au moins "faire sentir", par des explicitations précises, ce que ça peut être ?
  • Les boréliens c'est beaucoup de choses, il n'y a qu'à voir à quel point c'est alambiqué et peu explicite de construire un non borélien (je crois même qu'il faut l'axiome du choix, à confirmer).
  • Je ne sais pas si c'est compliqué de faire sentir, moi-même je n'ai jamais senti... Ce n'était pas une réponse docte que j'ai faite, c'était une esquive.
  • Ah non, faut pas esquiver...

    Alors, quand même, une "tribu" est construite sur les notions de "complémentaires" et d'"union dénombrable".

    Donc pourquoi ne suffirait-il pas de rajouter l'expression "toutes les unions et intersections possibles de ces éléments, ainsi que leurs complémentaires"

    Est-ce que disant cela, je continuerais d' "en oublier beaucoup", comme disait ci-dessus Maxtimax ?
  • @André49 une construction comme tu la cherches et qui permet de construire tous les boréliens est la Hiérarchie de Borel.
  • Oui, tu en oublies toujours beaucoup. Comme le dit raoul, tu as une hiérarchie de Borel, qui consiste en $\omega_1$ étapes où à chaque fois tu rajoutes intersections, unions et complémentaires; et à chaque étape (avant la $\omega_1$-ème) il t'en manque certains !
  • Ok, Ok, et ouille ! Je ne pensais pas qu'à partir d'intervalles $[a,b]$ ou $]a,b[$ on pouvait arriver à des constructions aussi compliquées (pour moi, s'entend).

    Donc, je vais en rester là sur ma recherche d'une explicitation des boréliens de $\mathbb{R}$.

    D'autant qu'il est l'heure de la soupe...

    Et je vous remercie de m'avoir aiguillé sur la Hiérarchie de Borel, qui m'était inconnue.
Connectez-vous ou Inscrivez-vous pour répondre.