Accueil

Lexique

1

[Définition] :

Toute homographie de \(\widetilde D\), avec \(D\) une droite affine, s’exprime de manière unique sous la forme \(M \mapsto [M,A,B,C]\) pour un certain triplet \((A,B,C)\) de points distincts de \(\widetilde D\). On appelle repère projectif de \(\widetilde D\) un triplet \(A,B,C\) de points distincts, et \([M,A,B,C]\) est appelé coordonnée de \(M\) dans le repère projectif \((A,B,C)\).

L’application qui à un point associe sa coordonnée dans un repère projectif est égale à composition par une homographie près à l’application qui à un point associe sa coordonnée dans un autre repère projectif.

Étant donné deux triplets de points distincts \((A,B,C)\) et \((A',B',C')\) respectivement sur \(\widetilde D\) et \(\widetilde D'\) (deux droites projectives), il existe une et une seule homographie \(h\) de \(\widetilde D\) sur \(\widetilde D'\) telle que \(h(A)=A'\), \(h(B)=B'\) et \(h(C)=C'\).

Étant donné deux quadruplets de points distincts \((A,B,C,D)\) et \((A',B',C',D')\) respectivement sur \(\tilde E\) et \(\tilde E'\) (deux droites projectives), il existe une homographie \(h\) de \(\tilde E\) sur \(\tilde E'\) telle que \(h(A)=A'\), \(h(B)=B'\), \(h(C)=C'\) et \(h(D)=D'\) si et seulement si \([A,B,C,D]=[A',B',C',D']\).

Une bijection entre deux droites projectives est une homographie si et seulement si elle conserve le birapport.

Étant donné \(\widetilde D\) une droite projective, et \(d \in \widetilde D\), \(\widetilde D\) induit sur \(E=\widetilde D \setminus \{d\}\) une structure de droite affine; \(GA(E)\) est l’ensemble des applications induites sur \(E\) par des homographies de \(\widetilde D\) dont \(d\) est un point fixe (on en déduit donc que tous les points de \(\widetilde D\) jouent le même rôle, même \(\infty\)).

Guide pour les auteures et auteurs de
Les-Mathematiques.net

En savoir plus
;
Success message!